Space NASA Image of the Day

Snow-Covered Northeastern United States

useastcoast_tmo_2015047_lrg.jpg


Yet another potent winter storm battered the northeastern United States on Feb. 14-15, 2015. The nor'easter brought 12 to 20 inches (30 to 50 centimeters) of snow across much of eastern New England, along with tropical storm force winds over 60 miles (100 kilometers) per hour. The latest snowfall pushed Boston to its highest monthly total on record—58 inches and counting—and its third highest yearly snow total. This image shows the snow-covered northeastern states as observed on Feb. 16, 2015, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Cloud streets over the Atlantic Ocean in both images hint at the potent winds blowing across the East Coast from the Canadian interior. Following the blizzard, temperatures dropped as low as -30 degrees Fahrenheit (-34° Celsius) in parts of New England. What the images do not show is snow depth. With the latest storm, nearly 8 feet (2.4 meters) of snow has fallen on the city of Boston in just three weeks. With temperatures persistently below freezing, very little snow has melted. According to National Climatic Data Center statistics the snow depth just south of Boston was roughly 42 inches (107 centimeters). Totals were above 30 inches (76 centimeters) in many locations in Maine, New Hampshire, and Massachusetts. As of Feb. 17, the snow depth near Boston was greater than in all but two reported locations in Alaska. It was significantly higher than the notoriously snowy states of Michigan, Wisconsin, and Minnesota. Only Buffalo, New York, had a higher snow pack. On Feb. 16-17, more snow and ice fell across the eastern United States from northern Mississippi all the way to Maine. Image Credit: NASA/Jeff Schmaltz, LANCE/EOSDIS Rapid Response, NASA Goddard Space Flight Center Caption: Mike Carlowicz (More at NASA Picture of The Day)
 
Magnetospheric Multiscale Observatories Processed for Launch

15953144593_3e251cc522_o.jpg


NASA's Magnetospheric Multiscale (MMS) observatories are processed for launch in a clean room at the Astrotech Space Operations facility in Titusville, Florida. MMS is an unprecedented NASA mission to study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe. The mission observes reconnection directly in Earth's protective magnetic space environment, the magnetosphere. By studying reconnection in this local, natural laboratory, MMS helps us understand reconnection elsewhere as well, such as in the atmosphere of the sun and other stars, in the vicinity of black holes and neutron stars, and at the boundary between our solar system's heliosphere and interstellar space. MMS is a NASA mission led by the Goddard Space Flight Center. The instrument payload science team consists of researchers from a number of institutions and is led by the Southwest Research Institute. Launch of the four identical observatories aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is managed by Kennedy Space Center’s Launch Services Program. Liftoff is currently targeted for 10:44 p.m. EDT on March 12. Image Credit: NASA/Ben Smegelsky (More at NASA Picture of The Day)
 
John Glenn During the Mercury-Atlas 6 Spaceflight

s62-00302.jpg


On Feb. 20, 1962, astronaut John H. Glenn, Jr., became the first American to orbit Earth. Launched from Cape Canaveral Launch Complex 14, Glenn's Mercury-Atlas 6 "Friendship 7" spacecraft completed a successful three-orbit mission, reaching a maximum altitude (apogee) of approximately 162 statute miles and an orbital velocity of approximately 17,500 miles per hour. The flight lasted a total of 4 hours, 55 minutes, and 23 seconds before the spacecraft splashed down in the ocean. This photograph of John Glenn during the Mercury-Atlas 6 spaceflight was taken by a camera onboard the spacecraft. Image Credit: NASA (More at NASA Picture of The Day)
 
Astronaut Barry Wilmore on the First of Three Spacewalks

256a8179_iss042e283178.jpg


NASA astronaut Barry Wilmore works outside the International Space Station on the first of three spacewalks preparing the station for future arrivals by U.S. commercial crew spacecraft, Saturday, Feb. 21, 2015. Fellow spacewalker Terry Virts, seen reflected in the visor, shared this photograph on social media. The spacewalks are designed to lay cables along the forward end of the U.S. segment to bring power and communication to two International Docking Adapters slated to arrive later this year. The new docking ports will welcome U.S. commercial spacecraft launching from Florida beginning in 2017, permitting the standard station crew size to grow from six to seven and potentially double the amount of crew time devoted to research. The second and third spacewalks are planned for Wednesday, Feb. 25 and Sunday, March 1, with Wilmore and Virts participating in all three. Image Credit: NASA (More at NASA Picture of The Day)
 
Curiosity Self-Portrait at 'Mojave' Site on Mount Sharp

pia19142_malhi-mojave.jpg


This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Mojave" site, where its drill collected the mission's second taste of Mount Sharp. The scene combines dozens of images taken during January 2015 by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover's robotic arm. The pale "Pahrump Hills" outcrop surrounds the rover, and the upper portion of Mount Sharp is visible on the horizon. Darker ground at upper right and lower left holds ripples of wind-blown sand and dust. An annotated version, Fig. A, labels several of the sites Curiosity has investigated during three passes up the Pahrump Hills outcrop examining the outcrop at increasing levels of detail. The rover used its sample-collecting drill at "Confidence Hills" as well as at Mojave, and in late February was assessing "Telegraph Peak" as a third drilling site. The view does not include the rover's robotic arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rock Nest" (Catalog Page for PIA16468), "John Klein" (Catalog Page for PIA16937) and "Windjana" (Catalog Page for PIA18390). Curiosity used its drill to collect a sample of rock powder from target "Mojave 2" at this site on Jan. 31, 2015. The full-depth, sample-collection hole and the shallower preparation test hole beside it are visible in front of the rover in this self-portrait, and in more detail at Catalog Page for PIA19115 . The Mojave site is in the "Pink Cliffs" portion of the Pahrump Hills outcrop. The outcrop is an exposure of the Murray formation, which forms the basal geological layer of Mount Sharp. Views of Pahrump Hills from other angles are at Catalog Page for PIA19039 and the inset at Images | Multimedia – NASA’s Mars Exploration Program . The frames showing the rover in this mosaic were taken during the 868th Martian day, or sol, of Curiosity's work on Mars (Jan. 14, 2015). Additional frames around the edges to extend the amount of terrain included in the scene were taken on Sol 882 (Jan. 29, 2015). The frames showing the drill holes were taken on Sol 884 (Jan. 31, 2015). For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. The drilled holes in the rock are 0.63 inch (1.6 centimeters) in diameter. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. More information about Curiosity is online at NASA - MSL and Home | Curiosity – NASA’s Mars Exploration Program. Credit: NASA/JPL-Caltech/MSSS (More at NASA Picture of The Day)
 
Chicago in Winter

16589873002_21c846154d_o.jpg


From the International Space Station (ISS), European Space Agency astronaut Samantha Cristoforetti took this photograph of Chicago and posted it to social media on Feb. 19, 2015. She wrote, "How do you like #Chicago dressed for winter?" Crewmembers on the space station photograph the Earth from their unique point of view located 200 miles above the surface as part of the Crew Earth Observations program. Photographs record how the planet is changing over time, from human-caused changes like urban growth and reservoir construction, to natural dynamic events such as hurricanes, floods and volcanic eruptions. Astronauts have used hand-held cameras to photograph the Earth for more than 40 years, beginning with the Mercury missions in the early 1960s. The ISS maintains an altitude between 220 - 286 miles (354 - 460 km) above the Earth, and an orbital inclination of 51.6˚, providing an excellent stage for observing most populated areas of the world. Image Credit: NASA/ESA/Samantha Cristoforetti (More at NASA Picture of The Day)
 
Feb. 26, 1966 Launch of Apollo-Saturn 201

s66-22930_0.jpg


Apollo-Saturn 201 (AS-201), the first Saturn IB launch vehicle developed by NASA's Marshall Space Flight Center (MSFC), lifts off from Cape Canaveral, Florida, at 11:12 a.m. on Feb. 26, 1966. The AS-201 mission was an unmanned suborbital flight to test the Saturn 1B launch vehicle and the Apollo Command and Service Modules. This was the first flight of the S-IB and S-IVB stages, including the first flight test of the liquid-hydrogen/liquid oxygen-propelled J-2 engine in the S-IVB stage. During the thirty-seven minute flight, the vehicle reached an altitude of 303 miles and traveled 5,264 miles downrange. Image Credit: NASA (More at NASA Picture of The Day)
 
Hubble Images a Dusty Galaxy, Home to an Exploding Star

potw1508a.jpg


The galaxy pictured here is NGC 4424, located in the constellation of Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above, you would be able to see the arms of the galaxy wrapping around its center to give the characteristic spiral form. In 2012, astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. European Space Agency Credit: ESA/Hubble & NASA, Acknowledgement: Gilles Chapdelaine (More at NASA Picture of The Day)
 
The Shuttle Enterprise

284702main_GPN-2000-001363_full.jpg


In 1976, NASA's space shuttle Enterprise rolled out of the Palmdale manufacturing facilities and was greeted by NASA officials and cast members from the 'Star Trek' television series. From left to right they are: NASA Administrator Dr. James D. Fletcher; DeForest Kelley, who portrayed Dr. "Bones" McCoy on the series; George Takei (Mr. Sulu); James Doohan (Chief Engineer Montgomery "Scotty" Scott); Nichelle Nichols (Lt. Uhura); Leonard Nimoy (Mr. Spock); series creator Gene Roddenberry; U.S. Rep. Don Fuqua (D.-Fla.); and, Walter Koenig (Ensign Pavel Chekov). NASA is mourning the passing today, Feb. 27, 2015, of actor Leonard Nimoy, most famous for his role as Star Trek's Vulcan science officer Mr. Spock. The sci-fi classic served as an inspiration for many at NASA over the years, and Nimoy joined other cast members at special NASA events and worked to promote NASA missions, as in this 2007 video he narrated before the launch of the Dawn mission to the asteroid belt. Nimoy also was there for the 1976 rollout of the shuttle Enterprise, named for the show's iconic spacecraft. Image Credit: NASA (More at NASA Picture of The Day)
 
Astronaut Salutes Nimoy From Orbit

terry-llap.jpg


International Space Station astronaut Terry Virts (@AstroTerry) tweeted this image of a Vulcan hand salute from orbit as a tribute to actor Leonard Nimoy, who died on Friday, Feb. 27, 2015. Nimoy played science officer Mr. Spock in the Star Trek series that served as an inspiration to generations of scientists, engineers and sci-fi fans around the world. Cape Cod and Boston, Massachusetts, Nimoy's home town, are visible through the station window. (More at NASA Picture of The Day)
 
Astronauts Complete Series of Three Spacewalks

265b5693.jpeg


On Sunday, March 1, Expedition 42 Flight Engineer Terry Virts and Commander Barry "Butch" Wilmore ventured outside the International Space Station for their third spacewalk in eight days. Virts and Wilmore completed installing 400 feet of cable and several antennas associated with the Common Communications for Visiting Vehicles system known as C2V2. Boeing’s Crew Transportation System (CST)-100 and the SpaceX Crew Dragon will use the system in the coming years to rendezvous with the orbital laboratory and deliver crews to the space station. Virts (@AstroTerry) tweeted this photograph and wrote, "Out on the P3 truss. #AstroButch handing me his cable to install on the new antenna. #spacewalk" Image Credit: NASA (More at NASA Picture of The Day)
 
The NACA Spirit Captured, 1945

7584798180_5155dd9235_o.jpg


In this 1945 photo, test pilots (from left) Mel Gough, Herb Hoover, Jack Reeder, Steve Cavallo and Bill Gray stand in front of a P-47 Thunderbolt. The photo was taken at the then-named Langley Memorial Aeronautical Laboratory, which was a research facility for the National Advisory Committee for Aeronautics, or the NACA. The NACA was the main institutional basis for creating NASA in 1958. On March 3, 1915 – one hundred years ago -- the U.S. Congress established the NACA in order "to supervise and direct the scientific study of the problems of flight with a view to their practical solution." From humble beginnings with a $5000 budget, no paid staff and no facilities, the NACA won the Collier trophy five times. Its researchers made critical contributions to victory in World War II, spawned a world-leading civil aviation manufacturing industry, propelled supersonic flight, supported national security during the Cold War, and laid the foundation for modern air travel and the space age. Learn more about the 100th anniversary of the founding of the NACA at www.nasa.gov/naca100. Image Credit: NASA (More at NASA Picture of The Day)
 
Island of Hawaii From the International Space Station

16483294159_c75d7de8f5_o.jpg


From the International Space Station, European Space Agency astronaut Samantha Cristoforetti (@AstroSamantha) took this photograph of the island of Hawaii and posted it to social media on Feb. 28, 2015. Cristoforetti wrote, "And suddenly as we flew over the Pacific... the island of #Hawaii with its volcanoes! #HelloEarth" Crewmembers on the space station photograph the Earth from their unique point of view located 200 miles above the surface as part of the Crew Earth Observations program. Photographs record how the planet is changing over time, from human-caused changes like urban growth and reservoir construction, to natural dynamic events such as hurricanes, floods and volcanic eruptions. Astronauts have used hand-held cameras to photograph the Earth for more than 40 years, beginning with the Mercury missions in the early 1960s. The ISS maintains an altitude between 220 - 286 miles (354 - 460 km) above the Earth, and an orbital inclination of 51.6˚, providing an excellent stage for observing most populated areas of the world. Image Credit: NASA/ESA/Samantha Cristoforetti (More at NASA Picture of The Day)
 
Astronaut Scott Kelly Preparing for Launch on One-Year Mission

16104674433_c36fae52ea_o.jpg


NASA astronaut Scott Kelly is seen inside a Soyuz simulator at the Gagarin Cosmonaut Training Center (GCTC), Wednesday, March 4, 2015 in Star City, Russia. Kelly, along with Expedition 43 Russian cosmonaut Mikhail Kornienko of the Russian Federal Space Agency (Roscosmos), and Russian cosmonaut Gennady Padalka of Roscosmos were at GCTC for the second day of qualification exams in preparation for their launch to the International Space Station onboard a Soyuz TMA-16M spacecraft from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m. EST, March 27 (March 28, Kazakh time). As the one-year crew, Kelly and Kornienko will return to Earth on Soyuz TMA-18M in March 2016.Image Credit: NASA/Bill Ingalls (More at NASA Picture of The Day)
 
Ceres Seen From NASA's Dawn Spacecraft

pia19312.jpg


NASA's Dawn spacecraft has become the first mission to achieve orbit around a dwarf planet. The spacecraft was approximately 38,000 miles (61,000) kilometers from Ceres when it was captured by the dwarf planet’s gravity at about 4:39 a.m. PST (7:39 a.m. EST) Friday, March 6. This image of Ceres was taken by the Dawn spacecraft on March 1, just a few days before the mission achieved orbit around the previously unexplored world. The image shows Ceres as a crescent, mostly in shadow because the spacecraft's trajectory put it on a side of Ceres that faces away from the sun until mid-April. When Dawn emerges from Ceres' dark side, it will deliver ever-sharper images as it spirals to lower orbits around the planet. The image was obtained at a distance of about 30,000 miles (about 48,000 kilometers) at a sun-Ceres-spacecraft angle, or phase angle, of 123 degrees. Image scale on Ceres is 1.9 miles (2.9 kilometers) per pixel. Ceres has an average diameter of about 590 miles (950 kilometers). Dawn's mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, California, for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. The University of California, Los Angeles, is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team. For a complete list of acknowledgments, Overview | Dawn – NASA Solar System Exploration. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA (More at NASA Picture of The Day)
 
Taking a Closer Look at Orion After Successful Flight Test

16014323654_8a77e952b7_o.jpg


Engineers across the country have been busy taking a closer look at NASA's Orion spacecraft and the data it produced during its successful flight test in December 2014. Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, Orion was lifted using a special crane for removal of its heat shield on Feb. 13, 2015. In the background, technicians move the heat shield on a work stand. The spacecraft’s heat shield protected Orion as it reentered Earth’s atmosphere at searing temperatures. Removing the back shell allows the team to get a closer look at Orion’s systems to see how they fared during the trip to space. The heat shield was removed in preparation for shipment to NASA’s Marshall Space Flight Center in Huntsville, Alabama, where special equipment will be used to remove its ablative material. From there, the heat shield will be shipped to NASA’s Langley Research Center in Hampton, Virginia, where it will be outfitted on a test article for water impact testing. Meanwhile, NASA and Lockheed Martin, the prime contractor for Orion, continue to take a look at the data the flight test produced to validate pre-flight models and improve the spacecraft’s design. Analysis of data obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. Photo Credit: NASA/Jim Grossmann (More at NASA Picture of The Day)
 
Preparing to Test the Booster for NASA's New Rocket

m15-040.jpg


Engineers at Orbital ATK prepare to test the largest, most powerful booster ever built for NASA's new rocket, the Space Launch System (SLS), which will fire up for a ground test at 11:30 a.m. EDT on Wednesday, March 11, at Orbital ATK Propulsion Systems’ test facilities in Promontory, Utah. The two-minute static test is a significant milestone for the SLS as part of NASA’s journey to Mars, and follows years of development. It is one of two ground tests to qualify the booster for flight. A second test is planned for early 2016. Once qualification is complete, the hardware will be ready to help send the rocket, along with NASA’s Orion spacecraft, on its first flight test. When completed, two five-segment, solid-rocket boosters and four RS-25 main engines will power the SLS as it begins its deep space missions. The boosters operate in parallel with the main engines for the first two minutes of flight, providing more than 75 percent of the thrust needed for the rocket to escape Earth’s gravitational pull. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is updated, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system. Live coverage of the test on NASA TV begins on Wednesday at 11:00 a.m. EDT. Image Credit: Orbital ATK (More at NASA Picture of The Day)
 
Test Firing of Booster for NASA's New Rocket

boostertest.jpg


The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations, including an asteroid and Mars. The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK, and is one of two tests planned to qualify the booster for flight. Once qualified, the flight booster hardware will be ready for shipment to NASA’s Kennedy Space Center in Florida for the first SLS flight. More information. Image Credit: Orbital ATK (More at NASA Picture of The Day)
 
Expedition 42 Returns to Earth

201503120101hq.jpg


The Soyuz TMA-14M spacecraft is seen as it lands with International Space Station Expedition 42 commander Barry Wilmore of NASA, Alexander Samokutyaev of the Russian Federal Space Agency (Roscosmos) and Elena Serova of Roscosmos near the town of Zhezkazgan, Kazakhstan. The landing took place on the evening of Wednesday, March 11 in the U.S, and early in the morning on Thursday, March 12, in Kazakhstan. The three crew members returned to Earth after a 167-day mission on the orbital outpost that included hundreds of scientific experiments and several spacewalks to prepare the orbiting laboratory for future arrivals by U.S. commercial crew spacecraft. Credit: NASA/Bill Ingalls (More at NASA Picture of The Day)
 
Expedition 42 Soyuz Landing

16604583049_2c10d208b5_o.jpg


The Soyuz TMA-14M spacecraft is seen as it lands with Expedition 42 commander Barry Wilmore of NASA, Alexander Samokutyaev of the Russian Federal Space Agency (Roscosmos) and Elena Serova of Roscosmos near the town of Dzhezkazgan, Kazakhstan on Wednesday, March 11, 2015 (Thursday, March 12, Kazakh time). NASA astronaut Wilmore, Russian cosmonauts Samokutyaev and Serova returned to Earth after almost six months onboard the International Space Station where they served as members of the Expedition 41 and 42 crews. The spacecraft touched down safely at approximately 10:07 p.m. EDT. Image Credit: NASA/Bill Ingalls (More at NASA Picture of The Day)
 
Back
Top